PERRY N. FINLEY FOUNDATION

Subject(s): Mathematics
Sorted by AUTHOR

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Press asterisk for details on individual book!!!!!

AUTHOR Title
* Abramowitz and Stegun  Functions - Mathematical Functions (handbook)
* Adams and Guillemin Probability - Measure Theory and Probability
* Ahlfors, Lars V. Complex Analysis
* Akhiezer and Glazman Linear Operators in Hilbert Space, Theory of
* Akivis and Goldberg Linear Algebra and Tensors, Introduction to
* Aldous, D. AMS 77 Probability Approx. via the Poisson Clumping Heuristic
* Aliprantis and Burkinshaw Real Analysis, Principals of
* Aliprantis and Burkinshaw Real Analysis, Problems in
* Allenby, R.B.J.T. Rings, Fields and Groups
* Anderson, Ian Combinatorial Mathematics, First Course
* Anderson, Ian Combinatorics of Finite Sets
* Apostol, Tom M. Analysis, Mathematical
* Apostol, Tom M. Calculus, Volume I
* Apostol, Tom M. Calculus, Volume II
* Apostol, Tom M. GTM 041Modular Functions and Dirichlet Series in Number Theory
* Apostol, Tom M. UTM Analytic Number Theory, Intro.
* Aris, Rutherford Vectors, Tensors & Basic Equations of Fluid Mechanics
* Armstrong, M.A. UTM Topology, Basic
* Arnold and Avez Mechanics - Ergodic Prob. in Classical Mechanics
* Arnold and Avez Mechanics - Ergodic Prob. of Classical Mechanics
* Arnold, V.I. Differential Equations, Ordinary
* Arnold, V.I. GTM 060 Mathematical Methods of Classical Mechanics
* Arnold, Vladimir. I. Differential Equations, Ordinary
* Artin, E. Geometric Algebra
* Artin, Michael Algebra
* Ash, Robert B. Information Theory
* Ash, Robert B. Real Analysis and Probability
* Aubin, Jean-Pierre GTM 140 Optima and Equilibria
* Auslander and MacKenzie Differentiable Manifolds, Introduction
* Barnsley, Michael  Fractals Everywhere
* Baum, John D. Topology, Elements of Pointset
* Beals, Richard GTM 012 Advanced Mathematical Analysis
* Behnke, Bachmann, Fladt, Suess, Editors Fundamentals of Mathematics - Volume I
* Behnke, Bachmann, Fladt, Suess, Editors Fundamentals of Mathematics - Volume II
* Behnke, Bachmann, Fladt, Suess, Editors Fundamentals of Mathematics - Volume III
* Bender and Williamson Combinatorics - Foundations of Applied Combinatorics
* Benedetto and Frazier Wavelet: Mathematics and Applications
* Berberian, Sterling K. GTM 015 Functional Analysis & Operator Theory
* Berenstein and Gay GTM 125 Complex Variables
* Berger and Gostiaux GTM 115 Differential Geometry: Manifolds, Curves, etc..
* Billingsley, Patrick Probability and Measure
* Birkhoff and Rota Differential Equations, Ordinary
* Bishop and Goldberg Tensor Analysis on Manifolds
* Bishop, Fienberg and Holland Discrete Multivariate Analysis
* Boas, R. P. Complex Analysis, Invitation to
* Bogart, Kenneth P. Combinatorics, Introductory
* Bollobas, Bela GTM 063 Graph Theory
* Boolos and Jeffrey Computability and Logic
* Boothby, William M. 120 Differentiable Manifolds and Riemannian Geometry
* Borrelli and Coleman Differential Equations: A Modeling Approach
* Bowman, Frank Functions - Intro. to Bessel Functions
* Braun, Martin TAM 11 Differential Equations & Their Applications
* Breiman, Leo Probability
* Bremaud, Pierre UTM Probabilistic Modeling, An Introduction to
* Bressoud, David M. UTM Calculus, Second Year
* Broecker and Dieck GTM 998 Compact Lie Groups, RepresentationS of
* Broman, Arne Differential Equations, Introduction to Partial
* Brualdi, Richard A. Combinatorics, Introductory
* Bruce and Giblin Curves and Sigularities
* Bryant, Victor Analysis, Introduction onto
* Burn, R. P. Groups - A Path to Geometry
* Cameron, Peter J.  Combinatorics
* Campbell and Meyer, Jr. Linear Transformations, General Inverses of
* Carleson and Gamelin Complex Dynamics
* Carnap, Rudolf Logic - Symbolic Logic and its Applications (Intro.)
* Carton, Elie Spinors, Theory of
* Chandraselkharan, K. Fourier Transforms, Classical
* Chorin and Marsden TAM 4 Fluid Mechanics, a Math. Intro to
* Clark, Allan Algebra, Abstract Elements of
* Cohn, Harvey Conformal Mapping on Riemann Surfaces
* Constantin, Foias, Nicolaenko, Temam AMS 70 Integral Manifolds and Inertial Manifolds
* Conway, John B. GTM 011 Functions of One Complex Variable
* Conway, John B. GTM 096 Functional Analysis, A Course In
* Cox, Little, O'Shea UTM Ideals, Varieties and Algorithms
* Crapo and Rota Combinatorial Geometries (preliminary ed.)
* Croom, Fred H. Topology, Principles of
* Cullen, Charles G. Matrices and Linear Transformations
* Darling, R.W.R.  Differential Forms and Connections
* Daubechie, Ingrid Wavelets, Ten Lectures on
* Davies, B. AMS 25 Integral Transforms and their Applications
* Davis, Harry F. Fourier Series and Orthogonal Functions
* De Carmo, Manfredo Perdigao Geometry, Riemannian Geometry
* Debnath and Mikusinski Hilbert Spaces with Applications (Introduction)
* DeGroot, Morris H. Probability and Statistics
* Derrick, William R. Complex Analysis and Applications
* Dettman, John W. Complex Variables, Applied
* Deuschel and Stroock 137 Large Deviations
* Devaney and Keen Fractals, Chaos and Fractals
* DeVito, Carl L. Analysis, Functional & Linear Operator Theory
* Dixmier, Jacques UTM Topology, General
* Dixon, John D. Group Theory, Problems in
* Do Carmo, Manfredo P. Differential Geometry of Curves and Surfaces
* Dodson, C. T. J. GTM 130 Tensor Geometry
* Doerrie, Heinrich Elem. Math - 100 Great Problems of Elementary Math
* Drake, Alvin W. Probability Theory, Fundamentals of Applied
* Drake, Alvin W. Probability Theory, Fundamentals of Applied
* Dubrovin, Fomenko and Novikov GTM 093 Modern Geometry - Methods and Applications
* Dudley, Richard M. Real Analysis and Probability
* Dunford & Schwartz Linear Operators, Part I, General Theory
* Edgar, Gerald A.  UTM Topology - Measure, Topology and Fractal Geometry
* Edwards, Harold M. GTM 101 Galois Theory
* Edwards, Jr. and Penney Differential Equations (Elementary)
* Emery, Michel Stochastic Calculus in Manifolds
* Enderton, Herbert B. Logic - Introduction to Mathematical Logic
* Epstein and Carnielli Computability
* Eves, Howard Matrix Theory (Elementary)
* Falconer, K.J.  Geometry of Fractal Sets
* Farkas, Hershel M. and Kra, Irwin GTM 071 Riemann Surfaces
* Fisher, Stephen D. Complex Variables
* Flanders, Harley Differential Forms with Appl. to the Physical Sciences
* Flanigan, Francis J. Complex Variables
* Fogiel, M. (Chief Editor) Calculus - Pre-Calculus Problem Solver
* Fogiel, M. (Chief Editor) Differential Equations Problem Solver
* Folland, Gerald B. Differential Equations, Introduction to Partial
* Folland, Gerald B. Fourier Analysis and its Applications
* Forster, Otto GTM 081 Riemann Surfaces, Lectures On
* Fraleigh, John B. Algebra, Abstract (A First Course)
* Frege, Gottlob Arithmetic - Foundations of Arithmetic
* Friedman, Avner Analysis, Modern (Foundations of)
* Fudenberg and Tirole Game Theory
* Fulton, William Algebraic Curves
* Gelb, Arthur, Editor  Applied Optimal Estimation
* Gel'fand, I.M. Linear Algebra, Lectures on
* Gemignani, Michael C. Topology, Elementary
* Gessel and Rota Combinatorics, Classic Papers In
* Goldberg, Samuel Curvature and Homology
* Goldberg, Samuel Differential Equations, Introduction
* Goldberg, Seymour Linear Operators, Unbounded
* Goldblatt, Robert Geometry - Orthogonality and Spacetime Geometry
* Golub and Van Loan Matrix Computations
* Golubitsky and Guillemin GTM 014 Stable Mappings and Their Sigularities
* Gradshteyn and Ryzhik Calculus - Table of Integrals, Series and Products
* Graham, Knuth, Patashnik Concrete Mathematics
* Gray, Alfred Differential Geometry - Tubes
* Greenberg and Harper Algebraic Topology
* Greenspan, Benney and Turner Calculus
* Griffiths and Harris Algebraic Geometry (Principles of)
* Grimaldi, Ralph P. Discrete and Combinatorial Mathematics
* Guckenheimer and Holmes AMS 42 Nonlinear Oscillations, Dynamical Systems
* Guggenheimer, Heinrich W. Differential Geometry
* Guillemin and Pollack Topology, Differential
* Haaser and Sullivan  Real Analysis
* Haberman, Richard Differential Equations, Elementary Applied Partial
* Haberman, Richard Mathematical Models
* Hale, Jack K. Oscillations in Nonlinear Systems
* Halmos, Paul R. GTM 018 Measure Theory
* Halmos, Paul R. UTM Finite-Dimensional Vector Spaces
* Hanna and Rowland Fourier Series, Transforms & Boundary
* Harris, Theodore E. Branching Processes, Theory of
* Hartshorne, Robin GTM 052 Algebraic Geometry
* Hay, G.E. Tensor Analysis - Vector and Tensor Analysis
* Helgason, Sigurdur 080 Differential Geometry, Lie Groups, etc..
* Helgason, Sigurdur 113 Groups and Geometric Analysis
* Helson, Henry Harmonic Analysis
* Henle, James M. Set Theory, Outline of
* Hernandes-Lerma, O. AMS 79 Adaptive Markovw Control Processes
* Hewitt and Stromberg GTM 025 Real and Abstract Analysis
* Hildebrand, Francis B. Applied Mathematics, Methods of
* Hilton and Stammbach GTM 004 Homological Algebra, A Course in
* Hirsch and Smale 060 Differential Equations, Dynamical Systems, etc...
* Hirsch, Morris W. GTM 033 Differential Topology
* Hocking and Young Topology
* Hoffman and Kunze Linear Algebra
* Hu, T.C. Combinatorial Algorithms
* Humi and Miller Differential Equations, Ordinary (Second Course)
* Humphreys, James E. GTM 009 Lie Algebras & Representation Theory
* Humphreys, James E. GTM 021 Linear Algebraic Groups
* Humphrys and Prest Groups - Numbers,Codes and Codes
* Ince, E.L.  Differential Equations, Ordinary
* Islam, J.N. Mathematical Cosmology, Introduction
* Jackson/Thoro  Combinatorics - Applied Comb. with Problem Solving
* Jacob, Bill Linear Algebra
* Jacobson, Nathan Algebra II, Basic
* Jacobson, Nathan Algebra II, Basic
* Jacobson, Nathan GTM 030 Abstruct Algebra, Lectures In
* Jacobson, Nathan Lie Algebras
* Jeffery, R.L. Functions - Theory of Functions of a Real Variable
* John, Fritz AMS 1 Partial Differential Equations
* Jones and Singerman Functions - Complex Functions
* Kaiser, Gerald  Wavelets, A Friendly Guide to
* Kalbfleisch, J.G. Probability and Statistical Inference, VOLUME I
* Kaplan, Wilfred Calculus, Advanced
* Karatzas and Shreve GTM 113 Brownian Motion and Stochastic Calculus
* Katznelson, Yitzhak Harmonic Analysis, Introduction to
* Kauffman, Louis H. Study 115 On Knots
* Kevorkian, J. Differential Equations, Partial
* Klamkin, Murray - Editor Applied Mathematics, Problems in
* Kleppner and Ramsey Calculus, Quick
* Knopp, Konrad Infinite Sequences and Series
* Knopp, Konrad Functions - Theory of Functions (Problem Book)
* Knopp, Konrad Infinite Series, Theory and Application of
* Kobayashi and Nomizu Differential Geometry, Foundations of
* Koblitz, Neal GTM 114 Number Gheory and Cryptography, A Course in
* Koerner, T.W. Fourier Analysis
* Kolmogorow and Fomin Real Analysis, Introductory
* Kreiss and Lorenz 136 Ini.-Boundary Value Problems & Navier-Stokes Eq.
* Kreyszig, Erwin Analysis, Functional with Applications, Introductory
* Kreyszig, Erwin Differential Geometry
* Kung, Joseph P.S. Matroid Theory (A source book in Matroid Theory)
* Lakin and Sanchez  Differential Equations, Topics in Ordinary
* Lang, Serge Differential Manifolds
* Larson and Hostetler Calculus with Analytic Geometry
* Larson, Harold J. Probability Theory & Statistical Inference, Intro
* Lavrent'ev, M.A. Variational Methods for Boundary Value Problems
* Lax and Phillips 026 Scattering Theory
* Lebedev, Skalskaya, Uflyand Applied Mathematics, Problems in
* Lerman, Manuel Degrees of Unsolvability
* Levy and Lessman Finite Difference Equations
* Lichtenberg and Lieberman AMS 38 Regular and Chaotic Dynamics
* Light, W.A. Analysis, Abstract
* Lin and Segel Applied Mathematics to Deterministic Problems
* Loeve, M. GTM 045 Probability Theory I
* Lomont, J.S. Group Theory, Applications of Finite Groups
* Lovelock and Rund Tensors, Differential Forms, Var. Principles
* Lunn, Mary Mechanics, A First Course in
* Maddox, I.J.  Analysis, Elements of Functional
* Magnus, Karass, and Solitar Combinatorial Group Theory
* Mandelbrot, Benoit B. Fractal Geometry of Nature
* Manin, Yu. I. GTM 053 Mathematical Logic, A Course In
* Marcus and Minc Linear Algebra, Introduction to
* Marcus and Minc Matrix Theory and Matrix Inequalities, Survey of
* Margaris, Angelo Logic - Mathematical Logic (First Order)
* Marsden Jerrold E. Mechanics - 174 (Lectures on)
* Martin, George E. UTM Geometry - Transformation
* Massey, William S. GTM 056 Algebraic Topology, An Introduction
* Massey, William S. GTM 127 Algebraic Topology, A Basic Course In
* Massopust, Peter R. Fractal Functions, Fractal Surfaces and Wavelets
* Maxfield, John E. Algebra, Abstract and Solution by Radicals
* McCallum, Hughes-Hallett, Gleason Calculus - Multivariable Calculus (draft version)
* McCarthy, Paul J. Algebraic Extensions of Fields
* McCarty, George Topology
* McConnell, A.J. Tensor Analysis (Applications of)
* Mendelson, Bert Topology, Introduction to
* Mendelson, Elliott Logic - Introduction to Mathematical Logic,
* Meyer and Hall AMS 90 Intro to Hamiltonian Dynamical Systems and N-Body Problem
* Meyer, Richard E. Mathematical Fluid Dynamics
* Michel and Herget Algebra, Applied and Functional Analysis
* Milnor and Stasheff Study 076 Characteristic Classes
* Milnor, John W. Study 051 Morse Theory
* Milnor, John W. Topology from the Differentiable Viewpoint
* Minsky and Papert Perceptrons
* Mirsky, L. Linear Algebra, Introduction to
* MKenzie, McNulty and Taylor Algebras, Lattices, Varieties - Volume I
* Montesinos, Jose M. Differential Geometry, Clas. Tessel./Three Manifolds
* Morgan, Frank Geometric Measure Theory
* Morrison, Foster Dynamic Systems, The Art of Modeling
* Mosteller, Frederick Probability, 50 Challenging Problems in
* Munkres, James R. Analysis on Manifolds
* Munkres, James R. Topology (A First Course)
* Munkres, James R. Topology, Elements of Algebraic
* Naynor and Sell  AMS 40 Linear Operator Theory
* Nef, Walter Linear Algebra
* Nehari, Zeev Conformal Mapping
* Nemytskii and Stepanov Differential Equations, Qualitative Theory of
* Newman, M.H.A. Topology of Plane Sets of Points, Elements of
* Page, Warren   Topological Uniform Structures
* Palka, Bruce P. UTM Complex Function Theory, Intro.
* Papoulis, Athanasios Probability, Random Variables, Stochastic Proc.
* Passman, Donal Ring Theory, A Course In
* Pedersen, Gert K. GTM 118 Analysis Now
* Penner and Harer Study 125 Combinatorics of Train Tracks
* Perlis, Sam Matrices, Theory of
* Pettofrezzo, Anthony J. Matrices and Transformations
* Pfeiffer, Paul E. Probability Theory, Concepts of
* Pinsky, Mark A. Differential Equations, Partial
* Prakash, Nirmala Differential Geometry
* Protter and Morrey UTM Real Analysis, A First Course in
* Rabenstein, Albert L.   Differential Equations, Elementary
* Raghavarao, Damaraju Construction and Combinatorial Problems
* Ratcliffe, John G. GTM 149 Foundations of Hyperbolic Manifolds
* Rauch, Jeffrey GTM 128 Partial Differential Equations
* Ravenel, Douglas C. Study 128 Nilpotence and Periodicity in Stable Homotopy
* Redhefer, Ray Differential Equations
* Remmert, Reinhold GTM 122 Theory of Complex Functions
* Resnick, Sidney Stochastic Processes, Adventures in
* Riesz and SZ.-Nagy Analysis, Functional
* Roman, Steven GTM 134 Coding and Information Theory
* Romano and Siegel Probability and Statistics, counter examples
* Rosen, Kenneth H. Discrete Mathematics and its Applications
* Rosenlight, Maxwell Analysis, Introduction
* Ross, Sheldon M. Probability, A First Course in
* Ross, Sheldon M. Stochastic Processes
* Rotman, Joseph J. 035 Algebra, An Intoduction to Homological
* Rotman, Joseph J. GTM 119 Algebraic Topology, An Introduction
* Rowen, Louis Halle Ring Theory
* Royden, H.L. Real Analysis
* Rozanov, Y.A. Probability Theory, A Concise Course
* Ruckle, William H. Analysis, Modern
* Rudin, Walter Analysis, Functional
* Rudin, Walter Analysis, Principles of Mathematical
* Rudin, Walter Real Complex Analysis
* Saaty, Thomas L.  Differential Equations - Modern Nonlinear Equations
* Saff and Snider Complex Analysis, Fundamentals of
* Samelson, Hans Lie Algebras, Notes on
* Sansone, G. Geometry - Orthogonal Functions
* Saunders, D.J. Geometry of Jet Bundles - 142
* Schey, H.M. Calculus, DIV, Grad, Curl
* Schneider and Barker Matrices and Linear Algrbra
* Schwerdtfeger Geometry of Complex Numbers
* Scott, W.R. Group Theory
* Serre, J.P. GTM 042 Linear Representations of Finite Groups
* Shilov and Gurevich Calculus - Integral, Measure & Derivative
* Shilov, Georgi E. Linear Algebra
* Shilov, Georgi E. Real Analysis - Elem. Real and Complex Analysis
* Silverman, Richard A. Complex Analysis with Applications
* Silverman, Richard A. Complex Analysis, Introductory
* Simmons, George F. Differential Equations
* Sinai, Yakov G. Probability Theory
* Singer and Thorpe UTM Topology and Geometry, Lecture Notes on Elem.
* Sirovich, L. TAM 1 Applied Mathematics, Intro to
* Slomson, Alan Combinatorics, Introduction to
* Smullyan, Raymond m. Recursion Theory for Metamathematics
* Snapper and Troyer Metric Affine Geometry
* Sontag, E.D. TAM 6 Mathematical Control Theory
* Spiegel, Murray R. Algebra, College (Theory and Problems)
* Spiegel, Murray R. Calculus - Laplace Transforms (Theory and Problems)
* Spivak, Michael Calculus on Manifolds
* Sprecher, David A. Real Analysis, Elements of
* Stanley, Richard P. Combinatorics, Enumerative - volume I
* Stanton and White UTM Combinatorics, Constructive
* Sternberg, S. Group Theory and Physics
* Stewart and Tall Algebraic Number Theory
* Stewart, Ian Galois Theory
* Stilwell, John Geometry of Surfaces
* Stoker, J.J. Differential Geometry
* Stolfi, Jorge Geometry - Oriented Projective Geometry
* Straight, H. Joseph Combinatorics - An Invitation
* Strang, Gilbert Applied Mathematics (Introduction to)
* Strikwerda, John C. Finite Difference Schemes and Partial Diff. Equ.
* Stroock, Daniel, W. Integration - Theory of Integration
* Struik, Dirk J. Differential Geometry, Lectures on Classical
* Taylor, Angus E.  Integration, General Theory of Functions and Integration
* Teicher and Chow Probability Theory
* Thomas, Jr. and Finney Calculus and Analytic Geometry
* Thorpe, J.A. UTM Differentical Geometry, Topics in Elementary
* Tolstov, Georgi P. Fourier Series
* Torchinsky, Alberto Real Variables
* Treves, Francois 062 Differential Equations, Basic Linear Partial
* Tricomi, F.G. Calculus - Integral Equations
* Tucker, Alan Combinatorics - Applied Combinatorics
* Van Heijenoort, Jean   Logic - From Frege to Goedel
* Van Lint & Wilson Combinatorics
* Varadarajan, V.S. GTM 102 Lie Groups, Lie Algebras & their Represent.
* Verhulst, Ferdinand Differential Equations, Nonlinear & Dynamical Systems
* Volkovyskii, Lunts and Aramanovich Complex Analysis, Collection of Problems
* Von Seggern, David H. Curves and Surfaces, Mathematical
* Wan, Frederic Y.M.  Mathematical Models and Their Analysis
* Warner, Frank W. GTM 094 Differentiable Manifolds & Lie Groups
* Wehrhahn, K.H. Combinatorics, An Introduction
* Widder, David V. Calculus, Advanced
* Wiggins, S. AMS 73 Global Bifurcations and Chaos
* Wilf, Herbert S. Calculus - Generating Functionology
* William, Robert Geometrical Foundation of Natural Structure
* Williamson, Crowell & Trotter Calculus of Vector Functions
* Williamson, Richard, E. Differential Equations, Introduction to
* Wrede, Robert C. Tensor Analysis - Vector and Tensor Analysis
* Wylie, C. Ray Differential Equations
* Young, N.   Hilbert Space, An Introduction To
* Zwillinger, Daniel  Integration, Handbook of

Return to main catalog page.

Return to foundation home page.